Solved

Sketch the Graph of the Equation y=(x+5)23y=(x+5)^{2}-3 A)  vertex (5,3)\text { vertex } ( - 5 , - 3 )

Question 74

Multiple Choice

Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center andradius.
y=(x+5) 23y=(x+5) ^{2}-3
 Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center andradius.  y=(x+5) ^{2}-3     A)   \text { vertex } ( - 5 , - 3 )      B)   \text { vertex } ( 3,5 )      C)   \text { vertex } ( - 3 , - 5 )      D)   \text { vertex } ( 5 , - 3 )


A)  vertex (5,3) \text { vertex } ( - 5 , - 3 )
 Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center andradius.  y=(x+5) ^{2}-3     A)   \text { vertex } ( - 5 , - 3 )      B)   \text { vertex } ( 3,5 )      C)   \text { vertex } ( - 3 , - 5 )      D)   \text { vertex } ( 5 , - 3 )

B)  vertex (3,5) \text { vertex } ( 3,5 )
 Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center andradius.  y=(x+5) ^{2}-3     A)   \text { vertex } ( - 5 , - 3 )      B)   \text { vertex } ( 3,5 )      C)   \text { vertex } ( - 3 , - 5 )      D)   \text { vertex } ( 5 , - 3 )

C)  vertex (3,5) \text { vertex } ( - 3 , - 5 )
 Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center andradius.  y=(x+5) ^{2}-3     A)   \text { vertex } ( - 5 , - 3 )      B)   \text { vertex } ( 3,5 )      C)   \text { vertex } ( - 3 , - 5 )      D)   \text { vertex } ( 5 , - 3 )

D)  vertex (5,3) \text { vertex } ( 5 , - 3 )
 Sketch the graph of the equation. If the graph is a parabola, find its vertex. If the graph is a circle, find its center andradius.  y=(x+5) ^{2}-3     A)   \text { vertex } ( - 5 , - 3 )      B)   \text { vertex } ( 3,5 )      C)   \text { vertex } ( - 3 , - 5 )      D)   \text { vertex } ( 5 , - 3 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions