Solved

Write the Equation of the Hyperbola in Standard Form 4y216x2+40y32x+20=04 y ^ { 2 } - 16 x ^ { 2 } + 40 y - 32 x + 20 = 0

Question 98

Multiple Choice

Write the equation of the hyperbola in standard form. Identify the center and vertices.
- 4y216x2+40y32x+20=04 y ^ { 2 } - 16 x ^ { 2 } + 40 y - 32 x + 20 = 0


A) (y5) 216(x1) 24=1\frac { ( y - 5 ) ^ { 2 } } { 16 } - \frac { ( x - 1 ) ^ { 2 } } { 4 } = 1
center: (1,5) ( - 1 , - 5 ) ; vertices: (1,9) ,(1,1) ( - 1 , - 9 ) , ( - 1 , - 1 )
B) (y+5) 216(x+1) 24=1\frac { ( y + 5 ) ^ { 2 } } { 16 } - \frac { ( x + 1 ) ^ { 2 } } { 4 } = 1
center: (1,5) ( - 1 , - 5 ) ; vertices: (1,9) ,(1,1) ( - 1 , - 9 ) , ( - 1 , - 1 )
C) (y+5) 216(x+1) 24=1\frac { ( y + 5 ) ^ { 2 } } { 16 } - \frac { ( x + 1 ) ^ { 2 } } { 4 } = 1
center: (1,5) ( 1,5 ) ; vertices: (1,1) ,(1,9) ( 1,1 ) , ( 1,9 )
D) (y5) 216(x1) 24=1\frac { ( y - 5 ) ^ { 2 } } { 16 } - \frac { ( x - 1 ) ^ { 2 } } { 4 } = 1
center: (1,5) ( 1,5 ) ; vertices: (1,1) ,(1,9) ( 1,1 ) , ( 1,9 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions