Solved

The Model E(y)=β0+β1x1+β2x2E ( y ) = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 }

Question 97

Multiple Choice

The model E(y) =β0+β1x1+β2x2E ( y ) = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } was fit to a set of data.
A partial printout for the analysis follows:
 Actual  Predict  Lower 95% CL  Upper 95% CL  OBS  X1  X2  Value  Value  Residual  Predict  Predict 1778164474.70783.1758.46847.224119.126\begin{array} { r r r r r r r r r } \hline & & & \text { Actual } & \text { Predict } & & \text { Lower 95\% CL } & \text { Upper 95\% CL } \\\text { OBS } & \text { X1 } & \text { X2 } & \text { Value } & \text { Value } & \text { Residual } & \text { Predict } & \text { Predict } \\1 & 7781 & 644 & 74.707 & 83.175 & - 8.468 & 47.224 & 119.126 \\\hline\end{array}

Interpret the value of the residual when x1=7,781x _ { 1 } = 7,781 and x2=644x _ { 2 } = 644 .


A) Since the residual is not 0 , the model is not useful for predicting yy .
B) The predicted y^\hat { y } is 8.4688.468 less than the observed value of yy .
C) Since the residual is negative, there is evidence of a negative linear relationship between yy and at least one of the two independent variables.
D) The predicted y^\hat { y } exceeds the observed value of yy by 8.4688.468 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions