Solved

Find the Vertex, Focus, and Directrix of the Parabola x2=8yx^{2}=-8 y

Question 128

Multiple Choice

Find the vertex, focus, and directrix of the parabola.
- x2=8yx^{2}=-8 y
 Find the vertex, focus, and directrix of the parabola. - x^{2}=-8 y    A)  vertex:  ( 0,0 )   focus:  ( 0,2 )   directrix:  y = - 2     B)  vertex:  ( 0,0 )   focus:  ( - 2,0 )   directrix:  x = 2     C)  vertex:   (0,0)    focus:   (0,-2)    directrix:   y=2      D)  vertex:   (0,0)    focus:   (2,0)    directrix:   x=-2


A) vertex: (0,0) ( 0,0 )
focus: (0,2) ( 0,2 )
directrix: y=2y = - 2
 Find the vertex, focus, and directrix of the parabola. - x^{2}=-8 y    A)  vertex:  ( 0,0 )   focus:  ( 0,2 )   directrix:  y = - 2     B)  vertex:  ( 0,0 )   focus:  ( - 2,0 )   directrix:  x = 2     C)  vertex:   (0,0)    focus:   (0,-2)    directrix:   y=2      D)  vertex:   (0,0)    focus:   (2,0)    directrix:   x=-2

B) vertex: (0,0) ( 0,0 )
focus: (2,0) ( - 2,0 )
directrix: x=2x = 2
 Find the vertex, focus, and directrix of the parabola. - x^{2}=-8 y    A)  vertex:  ( 0,0 )   focus:  ( 0,2 )   directrix:  y = - 2     B)  vertex:  ( 0,0 )   focus:  ( - 2,0 )   directrix:  x = 2     C)  vertex:   (0,0)    focus:   (0,-2)    directrix:   y=2      D)  vertex:   (0,0)    focus:   (2,0)    directrix:   x=-2

C)
vertex: (0,0) (0,0)
focus: (0,2) (0,-2)
directrix: y=2 y=2
 Find the vertex, focus, and directrix of the parabola. - x^{2}=-8 y    A)  vertex:  ( 0,0 )   focus:  ( 0,2 )   directrix:  y = - 2     B)  vertex:  ( 0,0 )   focus:  ( - 2,0 )   directrix:  x = 2     C)  vertex:   (0,0)    focus:   (0,-2)    directrix:   y=2      D)  vertex:   (0,0)    focus:   (2,0)    directrix:   x=-2

D)
vertex: (0,0) (0,0)
focus: (2,0) (2,0)
directrix: x=2 x=-2
 Find the vertex, focus, and directrix of the parabola. - x^{2}=-8 y    A)  vertex:  ( 0,0 )   focus:  ( 0,2 )   directrix:  y = - 2     B)  vertex:  ( 0,0 )   focus:  ( - 2,0 )   directrix:  x = 2     C)  vertex:   (0,0)    focus:   (0,-2)    directrix:   y=2      D)  vertex:   (0,0)    focus:   (2,0)    directrix:   x=-2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions