Solved

Discuss the Equation and Graph It r=42sinθr=\frac{4}{2-\sin \theta} A)directrix Perpendicular to Polar Axis 8 Right of Pole
Center

Question 126

Multiple Choice

Discuss the equation and graph it.
- r=42sinθr=\frac{4}{2-\sin \theta}
 Discuss the equation and graph it. - r=\frac{4}{2-\sin \theta}      A) directrix perpendicular to polar axis 8 right of pole center   \left(-\frac{8}{15}, 0\right)      \operatorname{vertices}\left(\frac{8}{3}, \pi\right) ,\left(\frac{8}{5}, 0\right)        B)  directrix parallel to polar axis 8 above pole center   \left(-\frac{8}{15}, \frac{\pi}{2}\right)    vertices   \left(-\frac{8}{5}, \frac{3 \pi}{2}\right) ,\left(\frac{8}{3}, \frac{3 \pi}{2}\right)        C) directrix perpendicular to polar axis 8 left of pole center   \left(\frac{8}{15}, 0\right)    vertices   \left(\frac{8}{5}, \pi\right) ,\left(\frac{8}{3}, 0\right)        D)  directrix parallel to polar axis 8 below pole center   \left(\frac{8}{15}, \frac{\pi}{2}\right)    vertices   \left(\frac{8}{3}, \frac{\pi}{2}\right) ,\left(\frac{8}{5}, \frac{3 \pi}{2}\right)


A) directrix perpendicular to polar axis 8 right of pole
center (815,0) \left(-\frac{8}{15}, 0\right)
vertices(83,π) ,(85,0) \operatorname{vertices}\left(\frac{8}{3}, \pi\right) ,\left(\frac{8}{5}, 0\right)

 Discuss the equation and graph it. - r=\frac{4}{2-\sin \theta}      A) directrix perpendicular to polar axis 8 right of pole center   \left(-\frac{8}{15}, 0\right)      \operatorname{vertices}\left(\frac{8}{3}, \pi\right) ,\left(\frac{8}{5}, 0\right)        B)  directrix parallel to polar axis 8 above pole center   \left(-\frac{8}{15}, \frac{\pi}{2}\right)    vertices   \left(-\frac{8}{5}, \frac{3 \pi}{2}\right) ,\left(\frac{8}{3}, \frac{3 \pi}{2}\right)        C) directrix perpendicular to polar axis 8 left of pole center   \left(\frac{8}{15}, 0\right)    vertices   \left(\frac{8}{5}, \pi\right) ,\left(\frac{8}{3}, 0\right)        D)  directrix parallel to polar axis 8 below pole center   \left(\frac{8}{15}, \frac{\pi}{2}\right)    vertices   \left(\frac{8}{3}, \frac{\pi}{2}\right) ,\left(\frac{8}{5}, \frac{3 \pi}{2}\right)

B) directrix parallel to polar axis 8 above pole center (815,π2) \left(-\frac{8}{15}, \frac{\pi}{2}\right)
vertices (85,3π2) ,(83,3π2) \left(-\frac{8}{5}, \frac{3 \pi}{2}\right) ,\left(\frac{8}{3}, \frac{3 \pi}{2}\right)

 Discuss the equation and graph it. - r=\frac{4}{2-\sin \theta}      A) directrix perpendicular to polar axis 8 right of pole center   \left(-\frac{8}{15}, 0\right)      \operatorname{vertices}\left(\frac{8}{3}, \pi\right) ,\left(\frac{8}{5}, 0\right)        B)  directrix parallel to polar axis 8 above pole center   \left(-\frac{8}{15}, \frac{\pi}{2}\right)    vertices   \left(-\frac{8}{5}, \frac{3 \pi}{2}\right) ,\left(\frac{8}{3}, \frac{3 \pi}{2}\right)        C) directrix perpendicular to polar axis 8 left of pole center   \left(\frac{8}{15}, 0\right)    vertices   \left(\frac{8}{5}, \pi\right) ,\left(\frac{8}{3}, 0\right)        D)  directrix parallel to polar axis 8 below pole center   \left(\frac{8}{15}, \frac{\pi}{2}\right)    vertices   \left(\frac{8}{3}, \frac{\pi}{2}\right) ,\left(\frac{8}{5}, \frac{3 \pi}{2}\right)

C) directrix perpendicular to polar axis 8 left of pole
center (815,0) \left(\frac{8}{15}, 0\right)
vertices (85,π) ,(83,0) \left(\frac{8}{5}, \pi\right) ,\left(\frac{8}{3}, 0\right)
 Discuss the equation and graph it. - r=\frac{4}{2-\sin \theta}      A) directrix perpendicular to polar axis 8 right of pole center   \left(-\frac{8}{15}, 0\right)      \operatorname{vertices}\left(\frac{8}{3}, \pi\right) ,\left(\frac{8}{5}, 0\right)        B)  directrix parallel to polar axis 8 above pole center   \left(-\frac{8}{15}, \frac{\pi}{2}\right)    vertices   \left(-\frac{8}{5}, \frac{3 \pi}{2}\right) ,\left(\frac{8}{3}, \frac{3 \pi}{2}\right)        C) directrix perpendicular to polar axis 8 left of pole center   \left(\frac{8}{15}, 0\right)    vertices   \left(\frac{8}{5}, \pi\right) ,\left(\frac{8}{3}, 0\right)        D)  directrix parallel to polar axis 8 below pole center   \left(\frac{8}{15}, \frac{\pi}{2}\right)    vertices   \left(\frac{8}{3}, \frac{\pi}{2}\right) ,\left(\frac{8}{5}, \frac{3 \pi}{2}\right)


D) directrix parallel to polar axis 8 below pole center (815,π2) \left(\frac{8}{15}, \frac{\pi}{2}\right)
vertices (83,π2) ,(85,3π2) \left(\frac{8}{3}, \frac{\pi}{2}\right) ,\left(\frac{8}{5}, \frac{3 \pi}{2}\right)
 Discuss the equation and graph it. - r=\frac{4}{2-\sin \theta}      A) directrix perpendicular to polar axis 8 right of pole center   \left(-\frac{8}{15}, 0\right)      \operatorname{vertices}\left(\frac{8}{3}, \pi\right) ,\left(\frac{8}{5}, 0\right)        B)  directrix parallel to polar axis 8 above pole center   \left(-\frac{8}{15}, \frac{\pi}{2}\right)    vertices   \left(-\frac{8}{5}, \frac{3 \pi}{2}\right) ,\left(\frac{8}{3}, \frac{3 \pi}{2}\right)        C) directrix perpendicular to polar axis 8 left of pole center   \left(\frac{8}{15}, 0\right)    vertices   \left(\frac{8}{5}, \pi\right) ,\left(\frac{8}{3}, 0\right)        D)  directrix parallel to polar axis 8 below pole center   \left(\frac{8}{15}, \frac{\pi}{2}\right)    vertices   \left(\frac{8}{3}, \frac{\pi}{2}\right) ,\left(\frac{8}{5}, \frac{3 \pi}{2}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions