Solved

Rotate the Axes So That the New Equation Contains No xy+16=0x y + 16 = 0

Question 131

Multiple Choice

Rotate the axes so that the new equation contains no xy-term. Discuss the new equation.
- xy+16=0x y + 16 = 0


A) θ=45\theta=45^{\circ}
y232+x232=1\frac{y^{\prime 2}}{32}+\frac{x^{\prime 2}}{32}=1
ellipse
center at (0,0) (0,0)
major axis is y y^{\prime} -axis
vertices at (0,±42) (0, \pm 4 \sqrt{2})

B) θ=45\theta=45^{\circ}
y232x232=1\frac{y^{\prime 2}}{32}-\frac{x^{\prime 2}}{32}=1
hyperbola
center at (0,0) (0,0)
transverse axis is y \mathrm{y}^{\prime} -axis
vertices at (0,±42) (0, \pm 4 \sqrt{2})

C) θ=45y2=32x parabola  vertex at (0,0)  focus at (8,0) \begin{array}{l}\theta=45^{\circ} \\y^{\prime 2}=-32 x^{\prime} \\\text { parabola } \\\text { vertex at }(0,0) \\\text { focus at }(-8,0) \end{array}

D) θ=36.90x124+y22=1\begin{array}{l}\theta=36.9^{0} \\\frac{x^{12}}{4}+\frac{y^{\prime 2}}{2}=1\end{array}
ellipse
center at (0,0) (0,0)
major axis is the x x^{\prime} -axis
vertices at (±2,0) (\pm 2,0)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions