Solved

SCENARIO 17-1
a Real Estate Builder Wishes to Determine How

Question 1

Multiple Choice

SCENARIO 17-1
A real estate builder wishes to determine how house size (House) is influenced by family income
(Income) , family size (Size) , and education of the head of household (School) . House size is
measured in hundreds of square feet, income is measured in thousands of dollars, and education is in
years. The builder randomly selected 50 families and ran the multiple regression. Microsoft Excel
output is provided below: SUMMARY OUTPUT
Regression Statistics
 Multiple R 0.865 R Square 0.748 Adjusted R Square 0.726 Standard Error 5.195 Observations 50\begin{array} { l l } \text { Multiple R } & 0.865 \\ \text { R Square } & 0.748 \\ \text { Adjusted R Square } & 0.726 \\ \text { Standard Error } & 5.195 \\ \text { Observations } & 50 \end{array}
ANOVA
df SS  MS F Signif F Regression 3605.77361201.92450.0000 Residual 1214.226426.3962 Total 494820.0000\begin{array} { l c c c c c } & d f & \text { SS } & \text { MS } & F & \text { Signif } F \\ \text { Regression } & & 3605.7736 & 1201.9245 & & 0.0000 \\ \text { Residual } & & 1214.2264 & 26.3962 & & \\ \text { Total } & 49 & 4820.0000 & & & \end{array}

 Coeff  StdError t Stat P-value  Intercept 1.63355.80780.2810.7798 Income 0.44850.11373.95450.0003 Size 4.26150.80625.2860.0001 School 0.65170.43191.5090.1383\begin{array} { l c l c c } & \text { Coeff } & \text { StdError } & t \text { Stat } & P \text {-value } \\ \text { Intercept } & - 1.6335 & 5.8078 & - 0.281 & 0.7798 \\ \text { Income } & 0.4485 & 0.1137 & 3.9545 & 0.0003 \\ \text { Size } & 4.2615 & 0.8062 & 5.286 & 0.0001 \\ \text { School } & - 0.6517 & 0.4319 & - 1.509 & 0.1383 \end{array}
-Referring to Scenario 17-1, which of the following values for the level of significance is the smallest for which the regression model as a whole is significant?


A) 0.0005
B) 0.001
C) 0.01
D) 0.05

Correct Answer:

verifed

Verified

Related Questions