Solved

Solve the System for X and Y Using Cramer's Rule x+1ay=a1bx+y=b\begin{array} { l } x + \frac { 1 } { a } y = a \\\frac { 1 } { b } x + y = b\end{array}

Question 470

Multiple Choice

Solve the system for x and y using Cramer's rule. Assume a and b are nonzero constants.
x+1ay=a1bx+y=b\begin{array} { l } x + \frac { 1 } { a } y = a \\\frac { 1 } { b } x + y = b\end{array}


A) {[b(a2b) a(ab1) ,a(b2a) b(ab1) ) }\left\{ \left[ \frac { b \left( a ^ { 2 } - b \right) } { a ( a b - 1 ) } , \frac { a \left( b ^ { 2 } - a \right) } { b ( a b - 1 ) } \right) \right\}
B) {(a(a2b) ab1,b(b2a) ab1) }\left\{ \left( \frac { a \left( a ^ { 2 } - b \right) } { a b - 1 } , \frac { b \left( b ^ { 2 } - a \right) } { a b - 1 } \right) \right\}
C) {((ab1) (a2b) a2b,(ab1) (b2a) b2a) }\left\{ \left( \frac { ( a b - 1 ) \left( a ^ { 2 } - b \right) } { a ^ { 2 } b } , \frac { ( a b - 1 ) \left( b ^ { 2 } - a \right) } { b ^ { 2 } a } \right) \right\}
D) {(b(a2b) ab1,a(b2a) ab1) }\left\{ \left( \frac { b \left( a ^ { 2 } - b \right) } { a b - 1 } , \frac { a \left( b ^ { 2 } - a \right) } { a b - 1 } \right) \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions