Solved

Let A=[e00a]A = \left[ \begin{array} { l l } e & 0 \\0 & a\end{array} \right]

Question 72

Multiple Choice

Let A=[e00a]A = \left[ \begin{array} { l l } e & 0 \\0 & a\end{array} \right] where e and a are nonzero constants. Find A1\mathrm { A } ^ { - 1 }


A) [1e111a]\left[ \begin{array} { c } \frac { 1 } { e } {1} \\1 \frac { 1 } { a }\end{array} \right]
B) [0ea0]\left[ \begin{array} { l l } 0 & e \\a & 0\end{array} \right]
C) [e00a]\left[ \begin{array} { l l } e & 0 \\0 & a\end{array} \right]
D)  Let  A = \left[ \begin{array} { l l }  e & 0 \\ 0 & a \end{array} \right]  where e and a are nonzero constants. Find  \mathrm { A } ^ { - 1 }  A)   \left[ \begin{array} { c }  \frac { 1 } { e } {1} \\ 1 \frac { 1 } { a } \end{array} \right]  B)   \left[ \begin{array} { l l }  0 & e \\ a & 0 \end{array} \right]  C)   \left[ \begin{array} { l l }  e & 0 \\ 0 & a \end{array} \right]  D)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions