Solved

Solve the Problem D=24[1cos1(tanitanθ)π]\mathrm { D } = 24 \left[ 1 - \frac { \cos ^ { - 1 } ( \tan i \tan \theta ) } { \pi } \right]

Question 25

Short Answer

Solve the problem.
-The formula
D=24[1cos1(tanitanθ)π]\mathrm { D } = 24 \left[ 1 - \frac { \cos ^ { - 1 } ( \tan i \tan \theta ) } { \pi } \right]
can be used to approximate the number of hours of daylight when the declination of the sun is ii ^ { \circ } at a location θ\theta ^ { \circ } latitude for any date between the vernal equinox and autumnal equinox. To use this formula, cos1(tanitanθ\cos ^ { - 1 } \left( \tan ^ { i } \tan \theta \right. ) must be expressed in radians. Approximate the number of hours of daylight in Flagstaff, Arizona, ( 351335 ^ { \circ } 13 ^ { \prime } north latitude) for summer solstice (i=23.5)\left( \mathrm { i } = 23.5 ^ { \circ } \right) .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions