Solved

Write the Expression in Terms of Sine and Cosine, and Simplify

Question 253

Multiple Choice

Write the expression in terms of sine and cosine, and simplify so that no quotients appear in the final expression.
-The power dissipated in an electric circuit is given by the expression P=RI2\mathrm { P } = \mathrm { RI } ^ { 2 } , where R\mathrm { R } is the resistance of the circuit and II is the current through the circuit. For a sinusoidal alternating current, the current might be represented by the relation I=Asin(2πft) \mathrm { I } = \mathrm { A } \sin ( 2 \pi \mathrm { ft } ) , where A\mathrm { A } is the amplitude, f\mathrm { f } is the frequency, and tt is time. Write an expression for PP involving the sine function, and use a fundamental identity to write PP in terms of the cosine function.


A) P=RA2sin2(2πft) ;P=RA2cos2(2πft) P = R A ^ { 2 } \sin ^ { 2 } ( 2 \pi f t ) ; P = - R A ^ { 2 } \cos ^ { 2 } ( 2 \pi f t )
B) P=RAsin2(2πft) ;P=RAcos2(2πft) P = R A \sin ^ { 2 } ( 2 \pi f t ) ; P = R A - \cos ^ { 2 } ( 2 \pi f t )
C) P=RA2sin2(2πfft) ;P=RA2RA2cos2(2πft) P = R A ^ { 2 } \sin ^ { 2 } ( 2 \pi f \mathrm { ft } ) ; P = R A ^ { 2 } - R A ^ { 2 } \cos ^ { 2 } ( 2 \pi f t )
D) P=RAsin2(2πfft) ;P=RARAcos2(2πft) P = R A \sin ^ { 2 } ( 2 \pi f \mathrm { ft } ) ; P = R A - R A \cos ^ { 2 } ( 2 \pi f t )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions