Solved

Evaluate the Integral by Using a Substitution Prior to Integration cos(lnx)dx\int \cos ( \ln x ) d x

Question 219

Multiple Choice

Evaluate the integral by using a substitution prior to integration by parts.
- cos(lnx) dx\int \cos ( \ln x ) d x


A) x[cos(lnx) +sin(lnx) ]+Cx [ \cos ( \ln x ) + \sin ( \ln x ) ] + C
B) x2[cos(lnx) +sin(lnx) ]+C\frac { x } { 2 } [ \cos ( \ln x ) + \sin ( \ln x ) ] + C
C) xcos(lnx) +sin(lnx) +Cx \cos ( \ln x ) + \sin ( \ln x ) + C
D) x2[cos(lnx) sin(lnx) ]+C\frac { x } { 2 } [ \cos ( \ln x ) - \sin ( \ln x ) ] + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions