Solved

Solve the Initial Value Problem for X as a Function (t+4)dxdt=x2+1,t>4,x(1)=tan1( t + 4 ) \frac { d x } { d t } = x ^ { 2 } + 1 , \quad t > - 4 , x ( 1 ) = \tan 1

Question 220

Multiple Choice

Solve the initial value problem for x as a function of t.
- (t+4) dxdt=x2+1,t>4,x(1) =tan1( t + 4 ) \frac { d x } { d t } = x ^ { 2 } + 1 , \quad t > - 4 , x ( 1 ) = \tan 1


A) x=tan[lnt+4ln5]x = \tan [ \ln | t + 4 | - \ln 5 ]
B) x=tan[lnt+4ln5+1]x = \tan [ \ln | t + 4 | - \ln 5 + 1 ]
C) x=tan1[lnt+4ln5+1]x = \tan ^ { - 1 } [ \ln | t + 4 | - \ln 5 + 1 ]
D) x=1t+41t5x = \frac { 1 } { t + 4 } - \frac { 1 } { t - 5 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions