Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 17

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- sinnxdx\int \sin ^ { n } x d x


A) sinnxdx=sinn1xcosx+(n1) sinn2xdx\int \sin ^ { n } x d x = \sin ^ { n - 1 } x \cos x + ( n - 1 ) \int \sin ^ { n - 2 } x d x
B) sinnxdx=1nsinn1xcosxn1nsinn1xdx\int \sin ^ { n } x d x = - \frac { 1 } { n } \sin ^ { n - 1 } x \cos x - \frac { n - 1 } { n } \int \sin ^ { n - 1 } x d x
C) sinnxdx=sinn1xcosx(n1) cosxsinn2xdx\int \sin ^ { n } x d x = \sin ^ { n - 1 } x \cos x - ( n - 1 ) \int \cos x \sin ^ { n - 2 } x d x
D) sinnxdx=1nsinn1xcosx+n1nsinn2xdx\int \sin ^ { n } x d x = - \frac { 1 } { n } \sin ^ { n - 1 } x \cos x + \frac { n - 1 } { n } \int \sin ^ { n - 2 } x d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions