Solved

Solve the Initial Value Problem for X as a Function (t25t+6)dxdt=1(t>3),x(4)=0\left( t ^ { 2 } - 5 t + 6 \right) \frac { d x } { d t } = 1 \quad ( t > 3 ) , x ( 4 ) = 0

Question 14

Multiple Choice

Solve the initial value problem for x as a function of t.
- (t25t+6) dxdt=1(t>3) ,x(4) =0\left( t ^ { 2 } - 5 t + 6 \right) \frac { d x } { d t } = 1 \quad ( t > 3 ) , x ( 4 ) = 0


A) x=lnt2+lnt3+ln2x = - \ln | t - 2 | + \ln | t - 3 | + \ln 2
B) x=lnt2+lnt3+2x = - \ln | t - 2 | + \ln | t - 3 | + 2
C) x=lnt2+1t3+ln2x = - \ln | t - 2 | + \frac { 1 } { t - 3 } + \ln 2
D) x=lnt2lnt3+ln2x = \ln | t - 2 | - \ln | t - 3 | + \ln 2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions