Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 85

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- cotnxdx,n1\int \cot ^ { n } x d x , n \neq 1


A) cotnxdx=1n1cotn2xcotn1xdx\int \cot ^ { n } x d x = \frac { - 1 } { n - 1 } \cot ^ { n - 2 } x - \int \cot ^ { n - 1 } x d x
B) cotnxdx=1n1cotn1xcotn2xdx\int \cot ^ { n } x d x = \frac { - 1 } { n - 1 } \cot ^ { n - 1 } x - \int \cot ^ { n - 2 } x d x
C) cotnxdx=cotn1x+1n1cotn2xdx\int \cot ^ { n } x d x = - \cot ^ { n - 1 } x + \frac { 1 } { n - 1 } \int \cot ^ { n - 2 } x d x
D) cotnxdx=1n1cotn1x+cotn1xdx\int \cot ^ { n } x d x = \frac { 1 } { n - 1 } \cot ^ { n - 1 } x + \int \cot ^ { n - 1 } x d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions