Solved

Solve the Initial Value Problem for Y as a Function x281dydx=1,x>9,y(18)=ln(2+93)\sqrt { x ^ { 2 } - 81 } \frac { d y } { d x } = 1 , x > 9 , y ( 18 ) = \ln ( 2 + 9 \sqrt { 3 } )

Question 80

Multiple Choice

Solve the initial value problem for y as a function of x.
- x281dydx=1,x>9,y(18) =ln(2+93) \sqrt { x ^ { 2 } - 81 } \frac { d y } { d x } = 1 , x > 9 , y ( 18 ) = \ln ( 2 + 9 \sqrt { 3 } )


A) y=ln(x+x281) +ln(2+93) y = \ln \left( x + \sqrt { x ^ { 2 } - 81 } \right) + \ln ( 2 + 9 \sqrt { 3 } )
B) y=118ln(x+9x9) +ln9y = \frac { 1 } { 18 } \ln \left( \frac { x + 9 } { x - 9 } \right) + \ln 9
C) y=ln(x+x281) +ln(2+93) ln(18+93) y = \ln \left( x + \sqrt { x ^ { 2 } - 81 } \right) + \ln ( 2 + 9 \sqrt { 3 } ) - \ln ( 18 + 9 \sqrt { 3 } )
D) y=lnsecx+tanx+ln(2+93) y = \ln | \sec x + \tan x | + \ln ( 2 + 9 \sqrt { 3 } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions