Solved

Use Various Trigonometric Identities to Simplify the Expression Then Integrate sin2θcos6θdθ\int \sin ^ { 2 } \theta \cos 6 \theta d \theta

Question 69

Multiple Choice

Use various trigonometric identities to simplify the expression then integrate.
- sin2θcos6θdθ\int \sin ^ { 2 } \theta \cos 6 \theta d \theta


A) 112sin4θ14sin6θ132sin8θ+C\frac { 1 } { 12 } \sin 4 \theta - \frac { 1 } { 4 } \sin 6 \theta - \frac { 1 } { 32 } \sin 8 \theta + C
B) 112sin6θ14sin4θ132sin8θ+C\frac { 1 } { 12 } \sin 6 \theta - \frac { 1 } { 4 } \sin 4 \theta - \frac { 1 } { 32 } \sin 8 \theta + C
C) 112sin6θ14sin8θ132sin4θ+C\frac { 1 } { 12 } \sin 6 \theta - \frac { 1 } { 4 } \sin 8 \theta - \frac { 1 } { 32 } \sin 4 \theta + C
D) 12sin6θ14sin4θ18sin8θ+C\frac { 1 } { 2 } \sin 6 \theta - \frac { 1 } { 4 } \sin 4 \theta - \frac { 1 } { 8 } \sin 8 \theta + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions