Solved

Solve the Problem by Integration tt (In Min) Required to Form xx

Question 190

Multiple Choice

Solve the problem by integration.
-Under specified conditions, the time tt (in min) required to form xx grams of a substance during a chemical reaction is given by t=dx(7x) (2x) t = \int \frac { d x } { ( 7 - x ) ( 2 - x ) } . Find the equation relating tt and xx if x=0gx = 0 g when t=0t = 0 min.


A) t=15ln2x7x15ln27t = \frac { 1 } { 5 } \ln \left| \frac { 2 - x } { 7 - x } \right| - \frac { 1 } { 5 } \ln \frac { 2 } { 7 }
B) t=15ln7x2x+15ln72t = \frac { 1 } { 5 } \ln \left| \frac { 7 - x } { 2 - x } \right| + \frac { 1 } { 5 } \ln \frac { 7 } { 2 }
C) t=15ln7x2x15ln72t = \frac { 1 } { 5 } \ln \left| \frac { 7 - x } { 2 - x } \right| - \frac { 1 } { 5 } \ln \frac { 7 } { 2 }
D) t=15ln2x7x+15ln27t = \frac { 1 } { 5 } \ln \left| \frac { 2 - x } { 7 - x } \right| + \frac { 1 } { 5 } \ln \frac { 2 } { 7 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions