Solved

Evaluate the Integral by Making a Substitution (Possibly Trigonometric) and Then

Question 193

Multiple Choice

Evaluate the integral by making a substitution (possibly trigonometric) and then applying a reduction formula.
- sec3θθdθ\int \frac { \sec ^ { 3 } \sqrt { \theta } } { \sqrt { \theta } } \mathrm { d } \theta


A) secθtanθlnsecθ+tanθ+C\sec \sqrt { \theta } \tan \sqrt { \theta } - \ln | \sec \sqrt { \theta } + \tan \sqrt { \theta } | + C
B) secθtanθ+lnsecθ+tanθ+C- \sec \sqrt { \theta } \tan \sqrt { \theta } + \ln | \sec \sqrt { \theta } + \tan \sqrt { \theta } | + C
C) secθtanθ+lnsecθ+tanθ+C\sec \sqrt { \theta } \tan \sqrt { \theta } + \ln | \sec \sqrt { \theta } + \tan \sqrt { \theta } | + C
D) secθtanθ+lnsecθtanθ+C- \sec \sqrt { \theta } \tan \sqrt { \theta } + \ln | \sec \sqrt { \theta } - \tan \sqrt { \theta } | + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions