Solved

Solve the Problem by Integration dydx=87x2+1289x4+16x2\frac { \mathrm { dy } } { \mathrm { dx } } = \frac { 87 \mathrm { x } ^ { 2 } + 128 } { 9 x ^ { 4 } + 16 \mathrm { x } ^ { 2 } }

Question 334

Multiple Choice

Solve the problem by integration.
-The slope of a curve is given by dydx=87x2+1289x4+16x2\frac { \mathrm { dy } } { \mathrm { dx } } = \frac { 87 \mathrm { x } ^ { 2 } + 128 } { 9 x ^ { 4 } + 16 \mathrm { x } ^ { 2 } } . Find the equation of the curve if it passes through (43,4) \left( \frac { 4 } { 3 } , 4 \right) .


A) y=8x54tan1(34x) 10+524πy = \frac { 8 } { x } - \frac { 5 } { 4 } \tan ^ { - 1 } \left( \frac { 3 } { 4 } x \right) - 10 + \frac { 5 } { 24 } \pi
B) y=8x+54tan1(34x) +10516πy = - \frac { 8 } { x } + \frac { 5 } { 4 } \tan ^ { - 1 } \left( \frac { 3 } { 4 } x \right) + 10 - \frac { 5 } { 16 } \pi
C) y=8x+54tan1(34x) 10516πy = \frac { 8 } { x } + \frac { 5 } { 4 } \tan ^ { - 1 } \left( \frac { 3 } { 4 } x \right) - 10 - \frac { 5 } { 16 } \pi
D) y=8x+54tan1(34x) +10524πy = - \frac { 8 } { x } + \frac { 5 } { 4 } \tan ^ { - 1 } \left( \frac { 3 } { 4 } x \right) + 10 - \frac { 5 } { 24 } \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions