Solved

Evaluate the Integral by Making a Substitution and Then Using x9xdx\int \frac { \sqrt { x } } { \sqrt { 9 - x } } d x

Question 327

Multiple Choice

Evaluate the integral by making a substitution and then using a table of integrals.
- x9xdx\int \frac { \sqrt { x } } { \sqrt { 9 - x } } d x


A) 9sin1(x3) 9xx2+C9 \sin ^ { - 1 } \left( \frac { \sqrt { x } } { 3 } \right) - \sqrt { 9 x - x ^ { 2 } } + C
B) 9x3ln3+9xx+C\sqrt { 9 - x } - 3 \ln \left| \frac { 3 + \sqrt { 9 - x } } { x } \right| + C
C) 9sin1(x3) 9x+C9 \sin ^ { - 1 } \left( \frac { x } { 3 } \right) - \sqrt { 9 - x } + C
D) 9sin1(x3) +x9x+C9 \sin ^ { - 1 } \left( \frac { \sqrt { x } } { 3 } \right) + x \sqrt { 9 - x } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions