Solved

Find the Slowest Growing and the Fastest Growing Functions as X→∞

Question 112

Multiple Choice

Find the slowest growing and the fastest growing functions as x→∞ .
- y=2x2+9xy=exy=ex/6y=log4x\begin{array} { l } y = 2 x ^ { 2 } + 9 x \\y = e ^ { x } \\y = e ^ { x } / 6 \\y = \log _ { 4 } x\end{array}


A) Slowest: y=log4xy = \log _ { 4 } x
Fastest: y=eX\mathrm { y } = \mathrm { e } ^ { \mathrm { X } }
B) Slowest: 2x2+9x2 x ^ { 2 } + 9 x
Fastest: y=ex\mathrm { y } = \mathrm { e } ^ { \mathrm { x } }
C) Slowest: y=ex/6y = e ^ { x } / 6
Fastest: 2x2+9x2 x ^ { 2 } + 9 x
D) Slowest: y=log4xy = \log _ { 4 } x
Fastest: y=ex\mathrm { y } = \mathrm { e } ^ { \mathrm { x } } and y=ex/6\mathrm { y } = \mathrm { e } ^ { \mathrm { x } } / 6 grow at the same rate.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions