Solved

Graph the Equation y=x+cos2x,0xπy=x+\cos 2 x, 0 \leq x \leq \pi

Question 304

Multiple Choice

Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points.
- y=x+cos2x,0xπy=x+\cos 2 x, 0 \leq x \leq \pi
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x+\cos 2 x, 0 \leq x \leq \pi    A)  local minimum:   \left(\frac{\pi}{4},-1\right)    local maximum:   \left(\frac{3 \pi}{4}, 3\right)    inflection point:   \left(\frac{\pi}{2}, 1\right)       B)  local minimum:   (1.444,-0.246)    local maximum:   (0.126,1.031)    inflection points:   (0.785,0.393) ,(2.356,1.178       C)  C)  no local extrema inflection point:   \left(\frac{\pi}{2}, \frac{\pi}{2}\right)       D) local minimum:   \left(\frac{5 \pi}{12}, \frac{5 \pi-6 \sqrt{3}}{12}\right)    local maximum:   \left(\frac{\pi}{12}, \frac{\pi+6 \sqrt{3}}{12}\right)    inflection points:   \left(\frac{\pi}{4}, \frac{\pi}{4}\right) ,\left(\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)


A)
local minimum: (π4,1) \left(\frac{\pi}{4},-1\right)
local maximum: (3π4,3) \left(\frac{3 \pi}{4}, 3\right)
inflection point: (π2,1) \left(\frac{\pi}{2}, 1\right)
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x+\cos 2 x, 0 \leq x \leq \pi    A)  local minimum:   \left(\frac{\pi}{4},-1\right)    local maximum:   \left(\frac{3 \pi}{4}, 3\right)    inflection point:   \left(\frac{\pi}{2}, 1\right)       B)  local minimum:   (1.444,-0.246)    local maximum:   (0.126,1.031)    inflection points:   (0.785,0.393) ,(2.356,1.178       C)  C)  no local extrema inflection point:   \left(\frac{\pi}{2}, \frac{\pi}{2}\right)       D) local minimum:   \left(\frac{5 \pi}{12}, \frac{5 \pi-6 \sqrt{3}}{12}\right)    local maximum:   \left(\frac{\pi}{12}, \frac{\pi+6 \sqrt{3}}{12}\right)    inflection points:   \left(\frac{\pi}{4}, \frac{\pi}{4}\right) ,\left(\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)

B)
local minimum: (1.444,0.246) (1.444,-0.246)
local maximum: (0.126,1.031) (0.126,1.031)
inflection points: (0.785,0.393) ,(2.356,1.178 (0.785,0.393) ,(2.356,1.178
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x+\cos 2 x, 0 \leq x \leq \pi    A)  local minimum:   \left(\frac{\pi}{4},-1\right)    local maximum:   \left(\frac{3 \pi}{4}, 3\right)    inflection point:   \left(\frac{\pi}{2}, 1\right)       B)  local minimum:   (1.444,-0.246)    local maximum:   (0.126,1.031)    inflection points:   (0.785,0.393) ,(2.356,1.178       C)  C)  no local extrema inflection point:   \left(\frac{\pi}{2}, \frac{\pi}{2}\right)       D) local minimum:   \left(\frac{5 \pi}{12}, \frac{5 \pi-6 \sqrt{3}}{12}\right)    local maximum:   \left(\frac{\pi}{12}, \frac{\pi+6 \sqrt{3}}{12}\right)    inflection points:   \left(\frac{\pi}{4}, \frac{\pi}{4}\right) ,\left(\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)


C) C) no local extrema
inflection point: (π2,π2) \left(\frac{\pi}{2}, \frac{\pi}{2}\right)
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x+\cos 2 x, 0 \leq x \leq \pi    A)  local minimum:   \left(\frac{\pi}{4},-1\right)    local maximum:   \left(\frac{3 \pi}{4}, 3\right)    inflection point:   \left(\frac{\pi}{2}, 1\right)       B)  local minimum:   (1.444,-0.246)    local maximum:   (0.126,1.031)    inflection points:   (0.785,0.393) ,(2.356,1.178       C)  C)  no local extrema inflection point:   \left(\frac{\pi}{2}, \frac{\pi}{2}\right)       D) local minimum:   \left(\frac{5 \pi}{12}, \frac{5 \pi-6 \sqrt{3}}{12}\right)    local maximum:   \left(\frac{\pi}{12}, \frac{\pi+6 \sqrt{3}}{12}\right)    inflection points:   \left(\frac{\pi}{4}, \frac{\pi}{4}\right) ,\left(\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)

D) local minimum: (5π12,5π6312) \left(\frac{5 \pi}{12}, \frac{5 \pi-6 \sqrt{3}}{12}\right)
local maximum: (π12,π+6312) \left(\frac{\pi}{12}, \frac{\pi+6 \sqrt{3}}{12}\right)
inflection points: (π4,π4) ,(3π4,3π4) \left(\frac{\pi}{4}, \frac{\pi}{4}\right) ,\left(\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x+\cos 2 x, 0 \leq x \leq \pi    A)  local minimum:   \left(\frac{\pi}{4},-1\right)    local maximum:   \left(\frac{3 \pi}{4}, 3\right)    inflection point:   \left(\frac{\pi}{2}, 1\right)       B)  local minimum:   (1.444,-0.246)    local maximum:   (0.126,1.031)    inflection points:   (0.785,0.393) ,(2.356,1.178       C)  C)  no local extrema inflection point:   \left(\frac{\pi}{2}, \frac{\pi}{2}\right)       D) local minimum:   \left(\frac{5 \pi}{12}, \frac{5 \pi-6 \sqrt{3}}{12}\right)    local maximum:   \left(\frac{\pi}{12}, \frac{\pi+6 \sqrt{3}}{12}\right)    inflection points:   \left(\frac{\pi}{4}, \frac{\pi}{4}\right) ,\left(\frac{3 \pi}{4}, \frac{3 \pi}{4}\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions