Solved

Graph the Equation y=x7x2y = x \sqrt { 7 - x ^ { 2 } }

Question 305

Multiple Choice

Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points.
- y=x7x2y = x \sqrt { 7 - x ^ { 2 } }
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = x \sqrt { 7 - x ^ { 2 } }    A)  local minimum:  \left( - \frac { \sqrt { 14 } } { 2 } , - \frac { 7 } { 2 } \right)   local maximum:  \left( \frac { \sqrt { 14 } } { 2 } , \frac { 7 } { 2 } \right)   inflection point:  ( 0,0 )      B)  local maximum:  \left( \frac { 14 } { 3 } , \frac { 2 \cdot 7 ^ { 3 / 2 } \cdot \sqrt { 3 } } { 9 } \right)    \text { no inflection point. }      C)  local maximum:  ( 0 , \sqrt { 7 } )    no inflection points.    D)  local minimum:   \left(-\frac{\sqrt{21}}{3},-\frac{2 \cdot 7^{3 / 2} \cdot \sqrt{3}}{9}\right)    local maximum:   \left(\frac{\sqrt{21}}{3}, \frac{2 \cdot 73 / 2 \cdot \sqrt{3}}{9}\right)    inflection point:   (0,0)


A) local minimum: (142,72) \left( - \frac { \sqrt { 14 } } { 2 } , - \frac { 7 } { 2 } \right)
local maximum: (142,72) \left( \frac { \sqrt { 14 } } { 2 } , \frac { 7 } { 2 } \right)
inflection point: (0,0) ( 0,0 )
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = x \sqrt { 7 - x ^ { 2 } }    A)  local minimum:  \left( - \frac { \sqrt { 14 } } { 2 } , - \frac { 7 } { 2 } \right)   local maximum:  \left( \frac { \sqrt { 14 } } { 2 } , \frac { 7 } { 2 } \right)   inflection point:  ( 0,0 )      B)  local maximum:  \left( \frac { 14 } { 3 } , \frac { 2 \cdot 7 ^ { 3 / 2 } \cdot \sqrt { 3 } } { 9 } \right)    \text { no inflection point. }      C)  local maximum:  ( 0 , \sqrt { 7 } )    no inflection points.    D)  local minimum:   \left(-\frac{\sqrt{21}}{3},-\frac{2 \cdot 7^{3 / 2} \cdot \sqrt{3}}{9}\right)    local maximum:   \left(\frac{\sqrt{21}}{3}, \frac{2 \cdot 73 / 2 \cdot \sqrt{3}}{9}\right)    inflection point:   (0,0)

B) local maximum: (143,273/239) \left( \frac { 14 } { 3 } , \frac { 2 \cdot 7 ^ { 3 / 2 } \cdot \sqrt { 3 } } { 9 } \right)
 no inflection point. \text { no inflection point. }
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = x \sqrt { 7 - x ^ { 2 } }    A)  local minimum:  \left( - \frac { \sqrt { 14 } } { 2 } , - \frac { 7 } { 2 } \right)   local maximum:  \left( \frac { \sqrt { 14 } } { 2 } , \frac { 7 } { 2 } \right)   inflection point:  ( 0,0 )      B)  local maximum:  \left( \frac { 14 } { 3 } , \frac { 2 \cdot 7 ^ { 3 / 2 } \cdot \sqrt { 3 } } { 9 } \right)    \text { no inflection point. }      C)  local maximum:  ( 0 , \sqrt { 7 } )    no inflection points.    D)  local minimum:   \left(-\frac{\sqrt{21}}{3},-\frac{2 \cdot 7^{3 / 2} \cdot \sqrt{3}}{9}\right)    local maximum:   \left(\frac{\sqrt{21}}{3}, \frac{2 \cdot 73 / 2 \cdot \sqrt{3}}{9}\right)    inflection point:   (0,0)


C) local maximum: (0,7) ( 0 , \sqrt { 7 } )
no inflection points.
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = x \sqrt { 7 - x ^ { 2 } }    A)  local minimum:  \left( - \frac { \sqrt { 14 } } { 2 } , - \frac { 7 } { 2 } \right)   local maximum:  \left( \frac { \sqrt { 14 } } { 2 } , \frac { 7 } { 2 } \right)   inflection point:  ( 0,0 )      B)  local maximum:  \left( \frac { 14 } { 3 } , \frac { 2 \cdot 7 ^ { 3 / 2 } \cdot \sqrt { 3 } } { 9 } \right)    \text { no inflection point. }      C)  local maximum:  ( 0 , \sqrt { 7 } )    no inflection points.    D)  local minimum:   \left(-\frac{\sqrt{21}}{3},-\frac{2 \cdot 7^{3 / 2} \cdot \sqrt{3}}{9}\right)    local maximum:   \left(\frac{\sqrt{21}}{3}, \frac{2 \cdot 73 / 2 \cdot \sqrt{3}}{9}\right)    inflection point:   (0,0)

D) local minimum: (213,273/239) \left(-\frac{\sqrt{21}}{3},-\frac{2 \cdot 7^{3 / 2} \cdot \sqrt{3}}{9}\right)
local maximum: (213,273/239) \left(\frac{\sqrt{21}}{3}, \frac{2 \cdot 73 / 2 \cdot \sqrt{3}}{9}\right)
inflection point: (0,0) (0,0)
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y = x \sqrt { 7 - x ^ { 2 } }    A)  local minimum:  \left( - \frac { \sqrt { 14 } } { 2 } , - \frac { 7 } { 2 } \right)   local maximum:  \left( \frac { \sqrt { 14 } } { 2 } , \frac { 7 } { 2 } \right)   inflection point:  ( 0,0 )      B)  local maximum:  \left( \frac { 14 } { 3 } , \frac { 2 \cdot 7 ^ { 3 / 2 } \cdot \sqrt { 3 } } { 9 } \right)    \text { no inflection point. }      C)  local maximum:  ( 0 , \sqrt { 7 } )    no inflection points.    D)  local minimum:   \left(-\frac{\sqrt{21}}{3},-\frac{2 \cdot 7^{3 / 2} \cdot \sqrt{3}}{9}\right)    local maximum:   \left(\frac{\sqrt{21}}{3}, \frac{2 \cdot 73 / 2 \cdot \sqrt{3}}{9}\right)    inflection point:   (0,0)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions