Solved

Find the Derivative of the Function f(t)=(2t)(2+t3)1f ( t ) = ( 2 - t ) \left( 2 + t ^ { 3 } \right) ^ { - 1 }

Question 432

Multiple Choice

Find the derivative of the function.
- f(t) =(2t) (2+t3) 1f ( t ) = ( 2 - t ) \left( 2 + t ^ { 3 } \right) ^ { - 1 }


A) f(t) =2t36t222+t3f ^ { \prime } ( t ) = \frac { 2 t ^ { 3 } - 6 t ^ { 2 } - 2 } { 2 + t ^ { 3 } }
B) f(t) =2t3+6t22(2+t3) 2f ^ { \prime } ( t ) = \frac { - 2 t ^ { 3 } + 6 t ^ { 2 } - 2 } { \left( 2 + t ^ { 3 } \right) ^ { 2 } }
C) f(t) =4t3+6t22(2+t3) 2f ^ { \prime } ( t ) = \frac { - 4 t ^ { 3 } + 6 t ^ { 2 } - 2 } { \left( 2 + t ^ { 3 } \right) ^ { 2 } }
D) f(t) =2t36t22(2+t3) 2f ^ { \prime } ( t ) = \frac { 2 t ^ { 3 } - 6 t ^ { 2 } - 2 } { \left( 2 + t ^ { 3 } \right) ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions