Solved

Solve the Problem rr And Volume V=43πr3\mathrm { V } = \frac { 4 } { 3 } \pi \mathrm { r } ^ { 3 }

Question 436

Multiple Choice

Solve the problem.
-Suppose that the radius rr and volume V=43πr3\mathrm { V } = \frac { 4 } { 3 } \pi \mathrm { r } ^ { 3 } of a sphere are differentiable functions of t\mathrm { t } . Write an equation that relates dV/dt\mathrm { dV } / \mathrm { dt } to dr/dt\mathrm { dr } / \mathrm { dt } .


A) dVdt=4πr2drdt\frac { d V } { d t } = 4 \pi r ^ { 2 } \frac { d r } { d t }
B) dVdt=4πdrdt\frac { d V } { d t } = 4 \pi \frac { d r } { d t }
C) dVdt=43πr2drdt\frac { d V } { d t } = \frac { 4 } { 3 } \pi r ^ { 2 } \frac { d r } { d t }
D) dVdt=3r2drdt\frac { d V } { d t } = 3 r ^ { 2 } \frac { d r } { d t }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions