Solved

A Function f(x)\mathrm { f } ( \mathrm { x } )

Question 195

Multiple Choice

A function f(x) \mathrm { f } ( \mathrm { x } ) , a point c\mathrm { c } , the limit of f(x) \mathrm { f } ( \mathrm { x } ) as xx approaches c\mathrm { c } , and a positive number ε\varepsilon is given. Find a number δ>0\delta > 0 such that for all x,0<xc<δf(x) L<εx , 0 < | \mathrm { x } - \mathrm { c } | < \delta \Rightarrow | \mathrm { f } ( \mathrm { x } ) - \mathrm { L } | < \varepsilon .
- f(x) =17x,L=4,c=1\mathrm { f } ( \mathrm { x } ) = \sqrt { 17 - \mathrm { x } } , \mathrm { L } = 4 , \mathrm { c } = 1 , and ε=1\varepsilon = 1


A) δ=9\delta = - 9
B) δ=8\delta = 8
C) δ=12\delta = 12
D) δ=7\delta = 7

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions