Solved

Solve the Problem δ(x,y,z)=x+y+z\delta ( x , y , z ) = x + y + z

Question 387

Multiple Choice

Solve the problem.
-Find the center of mass of a tetrahedron of density δ(x,y,z) =x+y+z\delta ( x , y , z ) = x + y + z bounded by the coordinate planes and the plane x5+y4+z8=1\frac { x } { 5 } + \frac { y } { 4 } + \frac { z } { 8 } = 1 .


A) xˉ=11051,yˉ=2817,zˉ=20051\bar { x } = \frac { 110 } { 51 } , \bar { y } = \frac { 28 } { 17 } , \bar { z } = \frac { 200 } { 51 }
B) xˉ=5534,yˉ=2117,zˉ=5017\bar { x } = \frac { 55 } { 34 } , \bar { y } = \frac { 21 } { 17 } , \bar { z } = \frac { 50 } { 17 }
C) xˉ=5551,yˉ=1417,zˉ=10051\bar { x } = \frac { 55 } { 51 } , \bar { y } = \frac { 14 } { 17 } , \bar { z } = \frac { 100 } { 51 }
D) xˉ=2217,yˉ=8485,zˉ=4017\bar { x } = \frac { 22 } { 17 } , \bar { y } = \frac { 84 } { 85 } , \bar { z } = \frac { 40 } { 17 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions