Solved

Solve the Problem x2+y2+z2=49x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49

Question 386

Multiple Choice

Solve the problem.
-Find the centroid of the region bounded above by the sphere x2+y2+z2=49x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49 and below by the plane z=2z = 2 if the density is constant.


A) xˉ=0,yˉ=0,zˉ=36364\bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 363 } { 64 }
B) xˉ=0,yˉ=0,zˉ=24380\bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 243 } { 80 }
C) xˉ=0,yˉ=0,zˉ=24364\bar { x } = 0 , \bar { y } = 0 , \bar { z } = \frac { 243 } { 64 }
D) xˉ=0,yˉ=0,zˉ=12\bar { x } = 0 , \bar { y } = 0 , \bar { z } = 12

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions