Solved

Solve the Problem DD Be the Region Bounded Below by The xyx y

Question 24

Multiple Choice

Solve the problem.
-Let DD be the region bounded below by the xyx y -plane, above by the sphere x2+y2+z2=49x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 49 , and on the sides by the cylinder x2+y2=36x ^ { 2 } + y ^ { 2 } = 36 . Set up the triple integral in cylindrical coordinates that gives the volume of DD using the order of integration dzdrdθ\mathrm { dz } \mathrm { dr } \mathrm { d } \theta .


A) 02π07036z2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 7 } \int _ { 0 } ^ { \sqrt { 36 - z ^ { 2 } } } r d z d r d \theta
B) 02π06049z2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 6 } \int _ { 0 } ^ { \sqrt { 49 - z ^ { 2 } } } r d z d r d \theta
C) 02π07036r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 7 } \int _ { 0 } ^ { \sqrt { 36 - r ^ { 2 } } } r d z d r d \theta
D) 02π06049r2rdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 6 } \int _ { 0 } ^ { \sqrt { 49 - r ^ { 2 } } } r d z d r d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions