Solved

Solve the Problem D\mathrm { D } Be the Region That Is Bounded Below by the Cone

Question 19

Multiple Choice

Solve the problem.
-Let D\mathrm { D } be the region that is bounded below by the cone φ=π4\varphi = \frac { \pi } { 4 } and above by the sphere ρ=4\rho = 4 . Set up the triple integral for the volume of DD in spherical coordinates.


A) 02π0π/204\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 4 } Q 2sinφdedφdθ^ { 2 } \sin \varphi \operatorname { de } d \varphi d \theta
B) 02π0π/404ρ2sinφdedφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 4 } \int _ { 0 } ^ { 4 } \rho ^ { 2 } \sin \varphi \mathrm { de } \mathrm { d } \varphi \mathrm { d } \theta
C) 02π03π/404ρ2sinφdedφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 3 \pi / 4 } \int _ { 0 } ^ { 4 } \rho ^ { 2 } \sin \varphi \operatorname { de } d \varphi \mathrm { d } \theta
D) 02π0π04ρ2sinφdedφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 4 } \rho ^ { 2 } \sin \varphi \mathrm { de } \mathrm { d } \varphi \mathrm { d } \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions