Solved

Solve the Problem B) C) D)

Question 22

Multiple Choice

Solve the problem.
-Let D be the smaller cap cut from a solid ball of radius 9 units by a plane 3 units from the center of the sphere. Set up the triple integral for the volume of D in spherical coordinates.


A) 02π0tan1(72/3) secφ9ϱ2sinφdφdφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \tan ^ { - 1 } ( \sqrt { 72 } / 3 ) } \int _ { \sec \varphi } ^ { 9 } \varrho ^ { 2 } \sin \varphi \mathrm { d } \varphi \mathrm { d } \varphi \mathrm { d } \theta
B) 02π0tan1(72/9) 3secφ9ϱ2sinφdedφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \tan ^ { - 1 } ( \sqrt { 72 } / 9 ) } \int _ { 3 \sec \varphi } ^ { 9 } \varrho ^ { 2 } \sin \varphi \mathrm { de } \mathrm { d } \varphi \mathrm { d } \theta
C) 02π0tan1(72/9) secφ9ϱ2sinφdedφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \tan ^ { - 1 } ( \sqrt { 72 } / 9 ) } \int _ { \sec \varphi } ^ { 9 } \varrho ^ { 2 } \sin \varphi \mathrm { de } d \varphi d \theta
D) 02π0tan1(72/3) 3secφ9ϱ2sinφddφdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \tan ^ { - 1 } ( \sqrt { 72 } / 3 ) } \int _ { 3 \sec \varphi } ^ { 9 } \varrho ^ { 2 } \sin \varphi \mathrm { d } \operatorname { d } \varphi \mathrm { d } \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions