Solved

Solve the Problem z=67x2+y2z = \frac { 6 } { 7 } \sqrt { x ^ { 2 } + y ^ { 2 } }

Question 375

Multiple Choice

Solve the problem.
-Find the center of mass of the solid enclosed between the cone with equation z=67x2+y2z = \frac { 6 } { 7 } \sqrt { x ^ { 2 } + y ^ { 2 } } and the plane with equation z=6z = 6 if the density at any point is proportional to the distance from that point to the axis of the cone.


A) (xˉ,yˉ,zˉ) =(0,0,92) ( \bar { x } , \bar { y } , \bar { z } ) = \left( 0,0 , \frac { 9 } { 2 } \right)
B) (x,y,z) =(0,0,4) ( \overline { \mathrm { x } } , \overline { \mathrm { y } } , \overline { \mathrm { z } } ) = ( 0,0,4 )
C) (xˉ,yˉ,zˉ) =(0,0,154) ( \bar { x } , \bar { y } , \bar { z } ) = \left( 0,0 , \frac { 15 } { 4 } \right)
D) (x,y,z) =(0,0,245) ( \overline { \mathrm { x } } , \overline { \mathrm { y } } , \overline { \mathrm { z } } ) = \left( 0,0 , \frac { 24 } { 5 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions