Solved

Find the Domain and Range and Describe the Level Curves f(x,y)=4x22y2f ( x , y ) = 4 x ^ { 2 } - 2 y ^ { 2 }

Question 318

Multiple Choice

Find the domain and range and describe the level curves for the function f(x,y) .
- f(x,y) =4x22y2f ( x , y ) = 4 x ^ { 2 } - 2 y ^ { 2 }


A) Domain: all points in the first quadrant of the xyx y -plane; range: all real numbers; level curves: hyperbolas 4x22y2=c4 x ^ { 2 } - 2 y ^ { 2 } = c
B) Domain: all points in the xyx y -plane; range: all real numbers; level curves: hyperbolas 4x22y2=c4 x ^ { 2 } - 2 y ^ { 2 } = c
C) Domain: all points in the xyx y -plane; range: real numbers z0\mathrm { z } \geq 0 ; level curves: ellipses 4x2+2y2=c4 x ^ { 2 } + 2 y ^ { 2 } = c
D) Domain: all points in the xy-plane; range: all real numbers; level curves: ellipses 4x2+2y2=c4 x ^ { 2 } + 2 y ^ { 2 } = c

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions