Solved

Find the Extreme Values of the Function Subject to the Given

Question 314

Multiple Choice

Find the extreme values of the function subject to the given constraint.
- f(x,y) =3xy+1,3x2+y2=9f ( x , y ) = 3 x - y + 1 , \quad 3 x ^ { 2 } + y ^ { 2 } = 9


A) Maximum: 7 at (32,32) ;\left( \frac { 3 } { 2 } , - \frac { 3 } { 2 } \right) ; minimum: 5- 5 at (32,32) \left( - \frac { 3 } { 2 } , \frac { 3 } { 2 } \right)
B) Maximum: 4 at (32,32) ;\left( \frac { 3 } { 2 } , \frac { 3 } { 2 } \right) ; minimum: 2- 2 at (32,32) \left( - \frac { 3 } { 2 } , - \frac { 3 } { 2 } \right)
C) Maximum: 4 at (32,32) ;\left( \frac { 3 } { 2 } , \frac { 3 } { 2 } \right) ; minimum: 5- 5 at (32,32) \left( - \frac { 3 } { 2 } , \frac { 3 } { 2 } \right)
D) Maximum: 7 at (32,32) ;\left( \frac { 3 } { 2 } , - \frac { 3 } { 2 } \right) ; minimum: 2- 2 at (32,32) \left( - \frac { 3 } { 2 } , - \frac { 3 } { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions