Solved

Write a Chain Rule Formula for the Following Derivative wt\frac { \partial \mathrm { w } } { \partial \mathrm { t } }

Question 264

Multiple Choice

Write a chain rule formula for the following derivative.
- wt\frac { \partial \mathrm { w } } { \partial \mathrm { t } } for w=f(x,y,z) ;x=g(s,t) ,y=h(s,t) ,z=k(s) \mathrm { w } = \mathrm { f } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) ; \mathrm { x } = \mathrm { g } ( \mathrm { s } , \mathrm { t } ) , \mathrm { y } = \mathrm { h } ( \mathrm { s } , \mathrm { t } ) , \mathrm { z } = \mathrm { k } ( \mathrm { s } )


A) wt=wtxt+wtyt\frac { \partial \mathrm { w } } { \partial \mathrm { t } } = \frac { \partial \mathrm { w } } { \partial \mathrm { t } } \frac { \partial \mathrm { x } } { \partial \mathrm { t } } + \frac { \partial \mathrm { w } } { \partial \mathrm { t } } \frac { \partial \mathrm { y } } { \partial \mathrm { t } }
B) wt=wxxt+wyyt\frac { \partial w } { \partial t } = \frac { \partial w } { \partial x } \frac { \partial x } { \partial t } + \frac { \partial w } { \partial y } \frac { \partial y } { \partial t }
C) wt=wxxt\frac { \partial \mathrm { w } } { \partial \mathrm { t } } = \frac { \partial \mathrm { w } } { \partial \mathrm { x } } \frac { \partial \mathrm { x } } { \partial \mathrm { t } }
D) wt=wx+wy\frac { \partial w } { \partial t } = \frac { \partial w } { \partial x } + \frac { \partial w } { \partial y }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions