Solved

Find the Absolute Maximum and Minimum Values of the Function f(x,y)=x2+2y2;f ( x , y ) = x ^ { 2 } + 2 y ^ { 2 } ;

Question 260

Multiple Choice

Find the absolute maximum and minimum values of the function on the given curve.
-Function: f(x,y) =x2+2y2;f ( x , y ) = x ^ { 2 } + 2 y ^ { 2 } ; curve: x29+y216=1,x0\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1 , x \geq 0 , y0y \geq 0 . (Use the parametric equations x=3x = 3 cos tt , y=4sinty = 4 \sin t .)


A) Absolute maximum: 32 at t=π2t = \frac { \pi } { 2 } ; absolute minimum: 9 at t=0t = 0
B) Absolute maximum: 16 at t=π2;t = \frac { \pi } { 2 } ; absolute minimum: 18 at t=0t = 0
C) Absolute maximum: 16 at t=π2;t = \frac { \pi } { 2 } ; absolute minimum: 9 at t=0t = 0
D) Absolute maximum: 32 at t=π2;t = \frac { \pi } { 2 } ; absolute minimum: 18 at t=0t = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions