Solved

Write a Chain Rule Formula for the Following Derivative A)

Question 67

Multiple Choice

Write a chain rule formula for the following derivative.
- ur for u=f(x) ;x=g(p,q,r) \frac { \partial \mathrm { u } } { \partial \mathrm { r } } \text { for } \mathrm { u } = \mathrm { f } ( \mathrm { x } ) ; \mathrm { x } = \mathrm { g } ( \mathrm { p } , \mathrm { q } , \mathrm { r } )


A) ur=dudxxr\frac { \partial \mathrm { u } } { \partial \mathrm { r } } = \frac { \mathrm { du } } { \mathrm { dx } } \frac { \partial \mathrm { x } } { \partial \mathrm { r } }
B) ur=dudx\frac { \partial u } { \partial r } = \frac { d u } { d x }
C) ur=xr\frac { \partial \mathrm { u } } { \partial \mathrm { r } } = \frac { \partial \mathrm { x } } { \partial \mathrm { r } }
D) ur=dudxxp+dudxxq+dudxxr\frac { \partial u } { \partial r } = \frac { d u } { d x } \frac { \partial x } { \partial p } + \frac { d u } { d x } \frac { \partial x } { \partial q } + \frac { d u } { d x } \frac { \partial x } { \partial r }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions