Solved

Find the Absolute Maximum and Minimum Values of the Function  Function: f(x,y)=x2+y2; curve: x=5t+1,y=5t1,0t1\text { Function: } f ( x , y ) = x ^ { 2 } + y ^ { 2 } ; \text { curve: } x = 5 t + 1 , y = 5 t - 1,0 \leq t \leq 1 \text {. }

Question 65

Multiple Choice

Find the absolute maximum and minimum values of the function on the given curve.
-  Function: f(x,y) =x2+y2; curve: x=5t+1,y=5t1,0t1\text { Function: } f ( x , y ) = x ^ { 2 } + y ^ { 2 } ; \text { curve: } x = 5 t + 1 , y = 5 t - 1,0 \leq t \leq 1 \text {. }


A) Absolute maximum: 52 at t = 1; absolute minimum: 2 at t = 0.
B) Absolute maximum: 51 at t = 1; absolute minimum: 6 at t = 0.
C) Absolute maximum: 51 at t = 1; absolute minimum: 2 at t = 0.
D) Absolute maximum: 52 at t = 1; absolute minimum: 6 at t = 0.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions