Solved

Find an Upper Bound for the Magnitude |E| of the Error

Question 4

Multiple Choice

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the
given region R.
- f(x,y) =9x2y3 at (2,1) ;R:x20.2,y10.2f ( x , y ) = 9 x ^ { 2 } y ^ { 3 } \text { at } ( 2,1 ) ; R : | x - 2 | \leq 0.2 , | y - 1 | \leq 0.2


A) E13.68576| E | \leq 13.68576
B) E19.65492| \mathrm { E } | \leq 19.65492
C) E25.09056| \mathrm { E } | \leq 25.09056
D) E19.38816| \mathrm { E } | \leq 19.38816

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions