Solved

Find an Upper Bound for the Magnitude |E| of the Error

Question 9

Multiple Choice

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the
given region R.
- f(x,y,z) =4xy+8yz+10zx at (1,1,1) ;R:x10.1,y10.1,z10.1\mathrm { f } ( \mathrm { x } , \mathrm { y } , \mathrm { z } ) = 4 \mathrm { xy } + 8 \mathrm { yz } + 10 \mathrm { zx } \text { at } ( 1,1,1 ) ; \mathrm { R } : | \mathrm { x } - 1 | \leq 0.1 , | \mathrm { y } - 1 | \leq 0.1 , | \mathrm { z } - 1 | \leq 0.1


A) E0.45| \mathrm { E } | \leq 0.45
B) E0.42| \mathrm { E } | \leq 0.42
C) E0.35| \mathrm { E } | \leq 0.35
D) E0.375| \mathrm { E } | \leq 0.375

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions