Solved

Find the Extreme Values of the Function Subject to the Given

Question 82

Multiple Choice

Find the extreme values of the function subject to the given constraint.
- f(x,y) =xy,9x2+4y2=36f ( x , y ) = x y , \quad 9 x ^ { 2 } + 4 y ^ { 2 } = 36


A) Maximum: 3 at (2,322) ;\left( \sqrt { 2 } , \frac { 3 } { 2 } \sqrt { 2 } \right) ; minimum: 3- 3 at (2,322) \left( - \sqrt { 2 } , - \frac { 3 } { 2 } \sqrt { 2 } \right)
B) Maximum: 3 at {2,322) \left\{ \sqrt { 2 } , \frac { 3 } { 2 } \sqrt { 2 } \right) and (2,322) ;\left( - \sqrt { 2 } , - \frac { 3 } { 2 } \sqrt { 2 } \right) ; minimum: 3- 3 at (2,322) \left( \sqrt { 2 } , - \frac { 3 } { 2 } \sqrt { 2 } \right) and (2,322) \left( - \sqrt { 2 } , \frac { 3 } { 2 } \sqrt { 2 } \right)
C) Maximum: 3 at (2,322) ;\left( \sqrt { 2 } , - \frac { 3 } { 2 } \sqrt { 2 } \right) ; minimum: 3- 3 at (2,322) \left( - \sqrt { 2 } , \frac { 3 } { 2 } \sqrt { 2 } \right)
D) Maximum: 3 at {2,322) ;\left\{ \sqrt { 2 } , \frac { 3 } { 2 } \sqrt { 2 } \right) ; minimum: 3- 3 at (2,322) \left( \sqrt { 2 } , - \frac { 3 } { 2 } \sqrt { 2 } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions