Solved

Use Taylor's Formula to Find the Requested Approximation of F(x f(x,y)=ex+2yf ( x , y ) = e ^ { x + 2 y }

Question 81

Multiple Choice

Use Taylor's formula to find the requested approximation of f(x, y) near the origin.
-Cubic approximation to f(x,y) =ex+2yf ( x , y ) = e ^ { x + 2 y }


A) 1+x+2y+12x2+2xy+2y2+16x3+23x2y+43xy2+43y31 + x + 2 y + \frac { 1 } { 2 } x ^ { 2 } + 2 x y + 2 y ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 } + \frac { 2 } { 3 } x ^ { 2 } y + \frac { 4 } { 3 } x y ^ { 2 } + \frac { 4 } { 3 } y ^ { 3 }
B) 1+x+2y+12x2+1xy+2y2+16x3+1x2y+2xy2+43y31 + x + 2 y + \frac { 1 } { 2 } x ^ { 2 } + 1 x y + 2 y ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 } + 1 x ^ { 2 } y + 2 x y ^ { 2 } + \frac { 4 } { 3 } y ^ { 3 }
C) 1+x+2y+12x2+1xy+2y2+16x3+23x2y+43xy2+43y31 + x + 2 y + \frac { 1 } { 2 } x ^ { 2 } + 1 x y + 2 y ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 } + \frac { 2 } { 3 } x ^ { 2 } y + \frac { 4 } { 3 } x y ^ { 2 } + \frac { 4 } { 3 } y ^ { 3 }
D) 1+x+2y+12x2+2xy+2y2+16x3+1x2y+2xy2+43y31 + x + 2 y + \frac { 1 } { 2 } x ^ { 2 } + 2 x y + 2 y ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 } + 1 x ^ { 2 } y + 2 x y ^ { 2 } + \frac { 4 } { 3 } y ^ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions