Solved

Solve the Initial Value Problem drdt=9ti+4tj+7tk\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = - 9 \mathrm { ti } + 4 \mathrm { tj } + 7 \mathrm { tk }

Question 86

Multiple Choice

Solve the initial value problem.
-Differential Equation: drdt=9ti+4tj+7tk\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = - 9 \mathrm { ti } + 4 \mathrm { tj } + 7 \mathrm { tk }
Initial Condition: r(0) =7i+4k\mathbf { r } ( 0 ) = - 7 \mathbf { i } + 4 \mathbf { k }


A) r(t) =(9t214) i+4t2j+(7t2+8) k\mathbf { r } ( \mathrm { t } ) = \left( - 9 \mathrm { t } ^ { 2 } - 14 \right) \mathbf { i } + 4 \mathrm { t } ^ { 2 } \mathbf { j } + \left( 7 \mathrm { t } ^ { 2 } + 8 \right) \mathbf { k }
B) r(t) =9t272i+2t2j+7t2+42kr ( t ) = \frac { - 9 t ^ { 2 } - 7 } { 2 } i + 2 t ^ { 2 } j + \frac { 7 t ^ { 2 } + 4 } { 2 } k
C) r(t) =9t272i+2t2j7t2+42k\mathbf { r } ( \mathrm { t } ) = \frac { - 9 \mathrm { t } ^ { 2 } - 7 } { 2 } \mathrm { i } + 2 \mathrm { t } ^ { 2 } \mathbf { j } - \frac { 7 \mathrm { t } ^ { 2 } + 4 } { 2 } \mathbf { k }
D) r(t) =9t2142i+2t2j+7t2+82k\mathbf { r } ( \mathrm { t } ) = \frac { - 9 \mathrm { t } ^ { 2 } - 14 } { 2 } \mathbf { i } + 2 \mathrm { t } ^ { 2 } \mathbf { j } + \frac { 7 \mathrm { t } ^ { 2 } + 8 } { 2 } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions