Solved

Evaluate the Integral A) 2i+(22+3π+42)jj+10(1+2)k2 \mathbf { i } + \left( \frac { 2 \sqrt { 2 } + 3 \pi + 4 } { 2 } \right) j \mathbf { j } + 10 ( 1 + \sqrt { 2 } ) \mathbf { k }

Question 83

Multiple Choice

Evaluate the integral.
- 0π/4[(2sec2t) i(3+sint) j(10secttant) k) ]dt\left. \int _ { 0 } ^ { \pi / 4 } \left[ \left( 2 \sec ^ { 2 } t \right) \mathbf { i } - ( 3 + \sin t ) \mathbf { j } - ( 10 \sec t \tan t ) \mathbf { k } \right) \right] d t


A) 2i+(22+3π+42) jj+10(1+2) k2 \mathbf { i } + \left( \frac { 2 \sqrt { 2 } + 3 \pi + 4 } { 2 } \right) j \mathbf { j } + 10 ( 1 + \sqrt { 2 } ) \mathbf { k }
B) 2i+{223π42) j+10(12) k2 \mathbf { i } + \left\{ \frac { 2 \sqrt { 2 } - 3 \pi - 4 } { 2 } \right) j + 10 ( 1 - \sqrt { 2 } ) \mathbf { k }
C) 2i+(223π44) j+10(12) k2 \mathbf { i } + \left( \frac { 2 \sqrt { 2 } - 3 \pi - 4 } { 4 } \right) \mathbf { j } + 10 ( 1 - \sqrt { 2 } ) \mathbf { k }
D) 2i+(223π42) jj+10(1+2) k2 \mathbf { i } + \left( \frac { 2 \sqrt { 2 } - 3 \pi - 4 } { 2 } \right) j \mathbf { j } + 10 ( 1 + \sqrt { 2 } ) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions