Solved

Solve the Initial Value Problem Initial Condition r(0)=9i+5j+11k\mathbf { r } ( 0 ) = - 9 \mathbf { i } + 5 \mathbf { j } + 11 \mathbf { k }

Question 85

Multiple Choice

Solve the initial value problem.
-Differential Equation: drdt=(9t25) ij+11+tk\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = \left( 9 \mathrm { t } ^ { 2 } - 5 \right) \mathbf { i } - \mathbf { j } + \frac { 1 } { \sqrt { 1 + \mathrm { t } } } \mathbf { k }
Initial Condition: r(0) =9i+5j+11k\mathbf { r } ( 0 ) = - 9 \mathbf { i } + 5 \mathbf { j } + 11 \mathbf { k }


A) r(t) =(3t35t9) i+(5t) j+(1+t9) kr ( t ) = \left( 3 t ^ { 3 } - 5 t - 9 \right) i + ( 5 - t ) j + ( \sqrt { 1 + t } - 9 ) \mathbf { k }
B) r(t) =(3t3+5t+9) i+(5+t) j+(1+t+9) kr ( t ) = \left( 3 t ^ { 3 } + 5 t + 9 \right) i + ( 5 + t ) j + ( \sqrt { 1 + t } + 9 ) k
C) r(t) =(3t35t9) i+(5t) j+(21+t+9) kr ( t ) = \left( 3 t ^ { 3 } - 5 t - 9 \right) \mathbf { i } + ( 5 - t ) j + ( 2 \sqrt { 1 + t } + 9 ) \mathbf { k }
D) r(t) =(9t35t9) i+(5t) j+(1+t+9) k\mathbf { r } ( \mathrm { t } ) = \left( 9 \mathrm { t } ^ { 3 } - 5 \mathrm { t } - 9 \right) \mathbf { i } + ( 5 - \mathrm { t } ) \mathbf { j } + ( \sqrt { 1 + \mathrm { t } } + 9 ) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions