Solved

Solve the Initial Value Problem Initial Condition r(0)=9i+5514j6k\mathbf { r } ( 0 ) = 9 \mathrm { i } + \frac { 55 } { 14 } \mathrm { j } - 6 \mathbf { k }

Question 123

Multiple Choice

Solve the initial value problem.
-Differential Equation: drdt=(3sec3ttan3t) i+t(t2+7) 2j+t2k\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = ( 3 \sec 3 \mathrm { t } \tan 3 \mathrm { t } ) \mathrm { i } + \frac { \mathrm { t } } { \left( \mathrm { t } ^ { 2 } + 7 \right) ^ { 2 } } \mathrm { j } + \mathrm { t } ^ { 2 } \mathbf { k }
Initial Condition: r(0) =9i+5514j6k\mathbf { r } ( 0 ) = 9 \mathrm { i } + \frac { 55 } { 14 } \mathrm { j } - 6 \mathbf { k }


A) r(t) =(sec3t+8) i12t2+14j+(t336) k\mathbf { r } ( t ) = ( \sec 3 t + 8 ) \mathbf { i } - \frac { 1 } { 2 t ^ { 2 } + 14 } \mathbf { j } + \left( \frac { t ^ { 3 } } { 3 } - 6 \right) \mathbf { k }
B) r(t) =(csc3t+8) i+(412t2+14) jj+(t36) kr ( t ) = ( \csc 3 t + 8 ) \mathbf { i } + \left( 4 - \frac { 1 } { 2 t ^ { 2 } + 14 } \right) j \mathbf { j } + \left( t ^ { 3 } - 6 \right) \mathbf { k }
C) r(t) =(csc3t+8) i+(412t2+14) j+(t336) k\mathbf { r } ( \mathrm { t } ) = ( \csc 3 \mathrm { t } + 8 ) \mathbf { i } + \left( 4 - \frac { 1 } { 2 \mathrm { t } ^ { 2 } + 14 } \right) \mathbf { j } + \left( \frac { \mathrm { t } ^ { 3 } } { 3 } - 6 \right) \mathbf { k }
D) r(t) =(sec3t+8) i+(412t2+14) jj+(t336) kr ( t ) = ( \sec 3 t + 8 ) i + \left( 4 - \frac { 1 } { 2 t ^ { 2 } + 14 } \right) j \mathbf { j } + \left( \frac { t ^ { 3 } } { 3 } - 6 \right) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions