Solved

Solve the Initial Value Problem d2rdt2=(8t3)i\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } = ( 8 \mathrm { t } - 3 ) \mathbf { i }

Question 120

Multiple Choice

Solve the initial value problem.
-Differential Equation: d2rdt2=(8t3) i\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } = ( 8 \mathrm { t } - 3 ) \mathbf { i }
Initial Conditions: drdtr=0=k,r(0) =8i+7j+6k\left. \frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } \right| _ { \mathrm { r } = 0 } = - \mathbf { k } , \mathrm { r } ( 0 ) = 8 \mathbf { i } + 7 \mathbf { j } + 6 \mathbf { k }


A) r(t) =(83t33t2+8) i+7j+(6t) kr ( t ) = \left( \frac { 8 } { 3 } t ^ { 3 } - 3 t ^ { 2 } + 8 \right) i + 7 j + ( 6 - t ) \mathbf { k }
B) r(t) =(83t3+32t2+8) i7j+(t6) kr ( t ) = \left( \frac { 8 } { 3 } t ^ { 3 } + \frac { 3 } { 2 } t ^ { 2 } + 8 \right) i - 7 j + ( t - 6 ) \mathbf { k }
C) r(t) =(43t332t2+8) i+7j+(6t) k r ( t ) = \left( \frac { 4 } { 3 } t ^ { 3 } - \frac { 3 } { 2 } t ^ { 2 } + 8 \right) i + 7 j + ( 6 - t ) k
D) r(t) =(43t3+32t2+8) i7j+(6t) kr ( t ) = \left( \frac { 4 } { 3 } t ^ { 3 } + \frac { 3 } { 2 } t ^ { 2 } + 8 \right) i - 7 j + ( 6 - t ) k

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions