Solved

For the Curve R(t), Find an Equation for the Indicated

Question 117

Multiple Choice

For the curve r(t) , find an equation for the indicated plane at the given value of t.
- r(t) =(t+6) i+(ln(cost) 8) j+7k,π/2<t<π2;\mathbf { r } ( \mathrm { t } ) = ( \mathrm { t } + 6 ) \mathbf { i } + ( \ln ( \cos \mathrm { t } ) - 8 ) \mathbf { j } + 7 \mathbf { k } , - \pi / 2 < \mathrm { t } < \pi \cdot 2 ; rectifying plane att=π4\mathrm { at } \mathrm {} \mathrm { t } = \frac { \pi } { 4 } .


A) 22(x(π4+6) ) 22(y(ln(22) 8) ) =0\frac { \sqrt { 2 } } { 2 } \left( x - \left( \frac { \pi } { 4 } + 6 \right) \right) - \frac { \sqrt { 2 } } { 2 } \left( y - \left( \ln \left( \frac { \sqrt { 2 } } { 2 } \right) - 8 \right) \right) = 0
B) 22(x(π4+6) ) +22(y(ln(22) 8) ) =0- \frac { \sqrt { 2 } } { 2 } \left( x - \left( \frac { \pi } { 4 } + 6 \right) \right) + \frac { \sqrt { 2 } } { 2 } \left( y - \left( \ln \left( \frac { \sqrt { 2 } } { 2 } \right) - 8 \right) \right) = 0
C) 22(x(1+6) ) =0\frac { \sqrt { 2 } } { 2 } ( x - ( 1 + 6 ) ) = 0
D) 22(x(π4+6) ) ) +22(y(ln(22) 8) ) =0\left. \frac { \sqrt { 2 } } { 2 } \left( x - \left( \frac { \pi } { 4 } + 6 \right) \right) \right) ^ { \prime } + \frac { \sqrt { 2 } } { 2 } \left( y - \left( \ln \left( \frac { \sqrt { 2 } } { 2 } \right) - 8 \right) \right) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions